
Scaling Distributed DNN Training for Large Images
Elaboration Presentation

CSE 5914.01

Rayan Hamza, Nawras Alnaasan, Zhengqi Dong, and Arpan Jain

The Ohio State University

E-mail: hamza.23@osu.edu, alnaasan.1@osu.edu, dong.760@osu.edu,
and jain.575@osu.edu

Outline

• Introduction
• Research Hypotheses

• Background Research

• Completed Work
▪Automatic splitting module of DNNs

- Analytical Model
- Network Representation and Splitting

▪CPU offloading of out-of-core models

• Future Work

Network Based Computing Laboratory 2CSE 5194.01

Project Vision

Network Based Computing Laboratory 3CSE 5194.01

• A user-friendly distributed DNN training framework for
model- and hybrid- parallelism for vision models.

Problem Statement
• Design and implement a distributed DNN training

framework in PyTorch to train out-of-core DNNs using an
automatic model splitting module designed to improve
performance.

Network Based Computing Laboratory 4CSE 5194.01

Model Parallelism (layer-level)

Research Hypotheses

Network Based Computing Laboratory 5CSE 5194.01

• Use analytical models to estimate execution time for a model split to
efficiently split DNNs across multiple GPUs

• Use PyTorch’s model and jit.trace API to understand data flow in DNNs
written in PyTorch to implement user transparent model splitting

• Use CPU offloading mechanism to optimize GEMS-MASTER design

Automatic splitting module of DNNs - Approaches

Network Based Computing Laboratory 6CSE 5194.01

• Analytical Model
▪ Based on layer propagation time and parameters
▪ Critical for deciding how to split the model

• Network representation and splitting
▪ Represent model as a graph to find layer connections
▪ Decide how to split the model
▪ Segment the model and train over many machines

Analyze

Represent

Model

Part

Part

Part
Split

Train

Train

Train

Automatic splitting module of DNNs - Background Research

Network Based Computing Laboratory 7CSE 5194.01

• Analytical Model:

Convolution has different time overheads depending on block size, conv.
operation(e.g. adaptive tiling), and kernel info [1]

• Network Graph Representation:

Existing tools for visualizing DNNs with PyTrorch: TensorBoard, Torchviz

Inconvenient for the purposes of the project.

[1] van Werkhoven et. al. Optimizing Convolution Operations on GPUs using Adaptive Tiling, 16 September 2013.

Analytical Model - Target Layer Times

Network Based Computing Laboratory 8CSE 5194.01

• Times for convolutional Layer

• nn.Conv2D(in_channels, out_channels,
kernel_size, padding)

▪ High maximums from first/last
iterations of model - preparation

▪ As expected, backprop is often twice
as long as forward prop

▪ Both layers have the same kernel size,
but different in and out channels,
which can affect the resulting times.

Analytical Model - Conv. Layer Time Prediction

Network Based Computing Laboratory 9CSE 5194.01

• Prediction using polynomial curve-fitting from
SKLearn framework.

▪ from SKLearn import PolynomialFeatures

• Time based on following parameters:

▪ In and out channels (32,64,128)

▪ Image size (square) (256px)

▪ kernel size (=3,5,7)

• Alternate model with different Conv. Layers

Analytical Model - Conv. Layer Time Prediction

Network Based Computing Laboratory 10CSE 5194.01

Network Representation - Parsing The Forward Function

Network Based Computing Laboratory 11CSE 5194.01

• No direct method to find layer/block connections in model in PyTorch

• Using torch.jit.trace can get a
string representation of the entire
forward function

• Parse string representation and
create an adjacency list.

• Visualize graph from adjacency list

Network Representation - Basic Results

Network Based Computing Laboratory 12CSE 5194.01

Basic CNN

Network Representation - Interconnected Models

Network Based Computing Laboratory 13CSE 5194.01

Interconnected CNN

Network Representation - AmoebaNet

Network Based Computing Laboratory 14CSE 5194.01

Output of TorchViz Library

Issues
1. No one-to-one mapping

with layers
2. Introduces nodes for

weights and biases
3. Shows graph for backward

propagation
4. No block-level abstraction

Network Representation - AmoebaNet

Network Based Computing Laboratory 15CSE 5194.01

AmoebaNet 6-layers

(Block-level representation)

AmoebaNet 18-layers

(Block-level representation)

Note: each block can be recursively extended to a full graph

Network Representation - Areas of improvement

Network Based Computing Laboratory 16CSE 5194.01

● Same layer used twice as input and output of conv2

● Logically viable, but creates cycle in graph

● Difficult to split the model using this graph

Proposed solution: duplicate layer and rename it

CPU offloading of out-of-core models

Network Based Computing Laboratory 17CSE 5194.01

• Research Question:

▪ What is the optimal approach to apply CPU-offloading
techniques for training out-of-core deep learning
models?

• Definition:

▪ CPU-offloading:

- Moving some memory from GPU to CPU during
training

▪ pin_momory:

- For data loading, passing pin_memory=True to a
DataLoader will automatically put the fetched data
Tensors in pinned memory, and thus enables faster
data transfer to CUDA-enabled GPUs

▪ Nonblocking:

- Allow asynchronous GPU copie. In other word, we
can bypass synchronization when it is unnecessary.

• Approaches:

a. Baseline: No CPU-offloading, everything is
trained on GPU

b. CPU-offloading without any optimization

c. CPU-offloading with pin-memory

d. CPU-offloading with non-blocking mechanism

e. CPU-offloading with pin-memory and
non-blocking mechanism

• Notes:

▪ 1 epoch = 8 step, each step use 32 sample as
batchsize

▪ Trained with 20 epochs, so 20 * 8 - 5= 155
iteration (Remove the first 5 outliers)

▪ Vgg19 was tested on RI2 sky-k80, and the rest
were tested on RI2 bdw-v100

Reference:https://developer.nvidia.com/blog/controlling-data-movement-to-boost-perform

ance-on-ampere-architecture/

https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/
https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

CPU offloading

Network Based Computing Laboratory 18CSE 5194.01

Table2: The total number of parameters
contained in models.

Table1: Measures the total of training time in sec for 20 epochs on Hymenoptera dataset,
https://download.pytorch.org/tutorial/hymenoptera_data.zip; sky-k80 refers to skylake CPU with
TESLA K80, and bdw-v100 refers to broadwell CPU with V100.

https://download.pytorch.org/tutorial/hymenoptera_data.zip

Key Takeaway

Network Based Computing Laboratory 19CSE 5194.01

• CPU offloading provides the potential to train larger out-off-core models but
also comes with the cost of I/O communication overhead.

• CPU offloading time is affected by underlying hardware architecture:

▪ sky-k80 tripled the total training time of bdw-v100 on baseline model.

• CPU offloading time is influenced by the number of parameters in a tensor:

▪ Fewer and denser tensors can accelerate the training.

• Optimizations help in models with more number of layers and parameters:

▪ The CPU Offloading optimization methods have effect only on ResNet50
and InceptionV3.

Future Work

Network Based Computing Laboratory 20CSE 5194.01

• Integrate Analytical model and Network representation code to split the
model automatically

▪ Use network representation to get model splits at different level
(block-level, layer-level, and module-level)

▪ Use analytical model to estimate the time for each layer/block/module
and divide the model into splits (logically)

▪ Use model generator to create different model splits

• Overlap CPU-offloading with computation to minimize cost and train larger
models.

▪ Improve the performance of model-parallelism by increasing the model
size trainable on a single GPU.

Network Based Computing Laboratory 21CSE 5194.01

Thank You for Your Time and Attention!

Hamza.23@osu.edu

Alnaasan.1@osu.edu

Dong.760@osu.edu

Jain.575@osu.edu

mailto:Hamza.23@osu.edu
mailto:Alnaasan.1@osu.edu
mailto:Dong.760@osu.edu
mailto:Jain.575@osu.edu

CPU offloading with vgg19 on sky-k80

Network Based Computing Laboratory 22CSE 5194.01

Table: CPU-offloading evaluation of vgg19 on RI2 sky-k80 (139,578,434 params in total)

CPU offloading with vgg19 on bdw-v100

Network Based Computing Laboratory 23CSE 5194.01

Table: CPU-offloading evaluation of vgg19 on RI2 bdw-v100 (139,578,434 params in total)

CPU offloading with AlexNet on bdw-v100

Network Based Computing Laboratory 24CSE 5194.01

Table: CPU-offloading evaluation of AlexNet on RI2 bdw-v100(57,012,034 params in total)

CPU offloading with ResNet50 on bdw-v100

Network Based Computing Laboratory 25CSE 5194.01

Table: CPU-offloading evaluation of ResNet50 on RI2 bdw-v100 (23,512,130 params in total)

CPU offloading with InceptionV3 on bdw-v100

Network Based Computing Laboratory 26CSE 5194.01

Table: CPU-offloading evaluation of InceptionV3 on RI2 bdw-v100 (24,348,900 params in total)

